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The Intergovernmental Panel on Climate Change fourth assessment report,
published in 2007 came to a more confident assessment of the causes of global
temperature change than previous reports and concluded that ‘it is likely that
there has been significant anthropogenic warming over the past 50 years averaged
over each continent except Antarctica’. Since then, warming over Antarctica has
also been attributed to human influence, and further evidence has accumulated
attributing a much wider range of climate changes to human activities. Such
changes are broadly consistent with theoretical understanding, and climate model
simulations, of how the planet is expected to respond. This paper reviews this
evidence from a regional perspective to reflect a growing interest in understanding
the regional effects of climate change, which can differ markedly across the
globe. We set out the methodological basis for detection and attribution and
discuss the spatial scales on which it is possible to make robust attribution
statements. We review the evidence showing significant human-induced changes
in regional temperatures, and for the effects of external forcings on changes
in the hydrological cycle, the cryosphere, circulation changes, oceanic changes,
and changes in extremes. We then discuss future challenges for the science of
attribution. To better assess the pace of change, and to understand more about
the regional changes to which societies need to adapt, we will need to refine our
understanding of the effects of external forcing and internal variability.  2010 John
Wiley & Sons, Ltd. WIREs Clim Change

There is a wealth of observational evidence that
climate is changing and which led the Intergov-

ernmental Panel on Climate Change fourth assessment
report (IPCC AR4) to conclude that warming of the
climate system is unequivocal.1 Such changes include
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global mean temperature, the extent of Arctic sea
ice, and global average sea level, all of whose values
averaged over the most recent decade are substantially
different than they were half a century or more earlier.
While the observational record leaves little room for
doubt that the earth is warming, the evidence does not
by itself tell us what caused those changes. We could be
experiencing natural fluctuations of climate operating
on multidecadal timescales. Alternatively, drivers of
climate change, such as volcanic eruptions or human-
induced emissions of greenhouse gases, could be forc-
ing sustained changes in climate. Detection and attri-
bution seeks to determine whether climate is changing
significantly and if so what has caused such changes.

Such an understanding has many potential appli-
cations. First, it makes sense to reduce greenhouse gas
emissions if they are contributing significantly to cli-
mate change. Second, attribution studies are needed
to understand the current risks of extreme weather.
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Under a nonstationary climate, we can no longer
assume that the climate is, as has been traditionally
assumed, the statistics of the weather over a fixed 30-
year period: what were previously rare events could
be already much more common. Instead, models are
needed to characterize the current climate, which can
be different from that of previous or succeeding years.
Third, by comparing observations with models in a
rigorous quantitative way, attribution can improve
confidence in model predictions and point out areas
where models are deficient and need improving.

There have been many advances made since the
AR4 that refine our understanding of human-induced
climate changes, and the objective of this paper is
to review these advances. We have a regional focus
because human influences can lead to very different cli-
matic changes in different parts of the world. In addi-
tion, natural climate variability can be important at
regional scales. Successful adaptation will necessitate
increased understanding of such regional differences.

WHAT DO WE MEAN BY DETECTION
AND ATTRIBUTION?

Detection is the process of demonstrating that climate
has changed in some defined statistical sense. Thus
detection seeks to determine whether observed data
indicate that climate is changing or are simply
consistent with possible fluctuations from natural
internal variability of the ocean atmosphere system.
Figure 1 shows an example of a detection analysis. A
‘control’ simulation of a coupled ocean–atmosphere
climate model over many centuries, with no changes
in the external drivers of climate such as increases
in greenhouse gas concentrations or in solar output,
does not exhibit the sustained rise in temperatures
seen in the observational data. A statistical test shows
that the 50-year global warming trend observed from
1959 to 2008 is detected at the 5% significance level,
as there is a less than 5% likelihood of such a large
trend due to internal variability alone, according to
the control simulation.

Multicentury long estimates of natural internal
variability from models are needed because equivalent
estimates cannot be obtained from observational data,
in part because the instrumental record is too short
to yield the reliable estimates of internal variability
that are required for detection and attribution, and in
part because the observational record is not free from
the effects of external influences. However, observa-
tional data are used to evaluate the internal variability
produced by climate models over decadal and multi-
decadal timescales (see Ref 2 for further discussion).
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FIGURE 1 | Observed global mean temperature changes from 1850
to 2008 (in red) from HadCRUT3v with uncertainties (yellow band as
derived by Brohan et al.7 and expressed as anomalies relative to the
mean temperature over the 1861–1899 period) overlain on a 1000 year
segment of global mean temperatures from control simulations from
the HadGEM1 model (black line).

With 1998 having a strong El Nino, and conse-
quently a very warm year globally, trends since 1998
have shown little warming or cooling, a fact which has
been used by some to claim that global warming has
stopped or slowed down. However, as demonstrated
in papers by Easterling and Wehner3 and by Knight
et al.,4 decade long trends with little warming or
cooling are to be expected under a sustained long-term
warming trend, as a result of multidecadal scale
internal variability. In addition, Zorita et al.5 have
shown that the observed recent clustering of warm
record-breaking global temperatures is very unlikely
to have occurred by chance in a stationary climate.
Further refinement of our understanding of the causes
of decadal variability would benefit from tracking
the changes of energy within the climate system6

and better understanding of the role of natural and
human-induced external drivers of climate, including,
for example, the effects of changing solar activity.

Attribution is the process of establishing the
most likely causes for a detected change with some
level of confidence. We seek to determine which
external forcing factors have significantly affected
the climate, where external forcing factors are agents
outside the climate system that cause it to change by
altering the radiative balance or other properties of the
climate. Examples of anthropogenic external forcing
factors include increases in well-mixed greenhouse
gases and changes in sulfate aerosols. Aerosols affect
clouds and can make them more reflective and scatter
more incoming solar radiation to space, and incoming
solar radiation can also be affected by natural forcing
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FIGURE 2 | Global mean surface temperature anomalies relative to
the period 1901–1950, as observed (black line) and as obtained from
climate model simulations with (a) both anthropogenic and natural
forcings (red lines) and (b) natural forcings only (blue lines). Vertical
gray lines indicate the timings of major volcanic eruptions. The thick red
and blue curves show the multiensemble means and the thin lighter
curves show individual simulations. (Reproduced from IPCC AR4 WGI
report; Figure TS.23).

factors which include changes in output from the sun
and changes in stratospheric aerosols from volcanic
eruptions. External forcings such as increases in
carbon dioxide and changes in land cover can force
the climate by changing evaporation from the Earth’s
land surface and transpiration of plants. Figure 2
shows that observed global mean temperature changes
are consistent with the spread of those climate
model simulations analyzed in the IPCC AR4 report
that include anthropogenic and natural forcings but
not with the spread of alternative climate model
simulations that exclude anthropogenic forcings.1

The standard approach to attribution is to use a
climate model to determine the expected response to
a particular forcing. Such a response, often denoted
the fingerprint of the expected change, results from
many processes acting in the atmosphere and ocean
and is affected by feedbacks, such as, for example,
decreasing albedo from melting snow and ice. Once
the fingerprints have been derived, an analysis is
carried out to determine if there is a significant
manifestation of these fingerprints in the observations.

The simplest technique is to compare observed
changes in aspects of the fingerprint with model sim-
ulations with and without anthropogenic forcings, as
illustrated in Figure 2. Direct comparisons of this sort
can be used to produce likelihood measures which can
be evaluated in a Bayesian framework to decide on the
most probable of competing explanations.8,9 Such a
consistency analysis satisfies the standard definition of
detection and attribution but it does not quantify the
relative contributions of anthropogenic and natural
factors. While the scales on which the signal emerges
above the noise may limit the detectability of regional
signals, these scales are likely to reduce as the climate
signal strengthens10 and indeed observed changes
may already be detectable at climate model grid box
scales (∼500 km) in many regions.11 However, key
problems for regional attribution are the extent to
which models are able to reliably capture the effects
of external forcings and of internal variability at these
small scales, and the extent to which the responses
to different forcings can be individually distinguished
in observations at these scales. Misattribution could
result if consistency between observations and models
is found as a result of compensating errors arising
fortuitously from missing processes in models, such
as the effects of locally important forcings (e.g.,
the effects of black carbon, missing from many
climate models, in darkening the snow surface and
accelerating Arctic warming12 or poor simulations of
regional circulations.

An advance on simple measures of consistency
is to compare observations with the responses to a
range of possible forcing factors in a linear regression
approach. Observed changes, y, are expressed as a
linear sum of m model fingerprints, xi, where u0,
represents internally generated variability:

y =
m∑

i=1

(xi − ui)βi + u0. (1)

The assumption of linearity is found to hold for
some combinations of forced changes, particularly the
direct effects of sulfate aerosols and greenhouses,13–15

although there is evidence that additivity does not
hold so well for some other combinations, including
greenhouse gases in combination with the indirect
effects of aerosols16 and greenhouse gases with solar
forcing17; The fingerprints, xi, are estimated from the
average of a finite number of simulations with identical
forcings but different initial conditions (typically 3 or
4 for most analyses), and are contaminated by internal
variability (which reduces as more ensemble members
are averaged); this noise is represented by ui.. Long
model control simulations, such as that shown in
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Figure 1 in which external forcings are held constant,
provide estimates of internal variability via the
covariance matrix of u0 and ui. In optimal detection,
the observations and fingerprints are normalized by
the climate’s internal variability (as estimated from
the long control simulation). This normalization is
standard in generalized linear regression and is used to
improve the signal-to-noise ratio (see Ref 18 for more
detailed discussion). A standard consistency test19 is
used to assess whether the residual of the regression is
consistent with the model-derived internal variability,
as expected if the scaled fingerprints are able to
capture the observed forced changes. Further details
on the methodology and examples of applications are
provided by Ref 2 and references therein.

The scaling factor for each model experiment,
βi, determines whether that forcing factor has been
detected and measures the level of consistency
between the model fingerprint and the observations. If
an estimated scaling factor is positive and its 5–95%
uncertainty range is inconsistent with zero then the
signal is detected at the 5% significance level (meaning
there is a 5% risk that the null hypothesis of no signif-
icant influence of that forcing is true but is rejected).
Values consistent with unity and with a small uncer-
tainty range imply good agreement between the model
and the observations. Values inconsistent with unity
imply a discrepancy between modeled and observed
changes which could be a result of problems with the
observational records or missing processes in models.

Scaling factors from analyses using different cli-
mate models applied to large-scale space time patterns
of near-surface temperature over the 20th century
are shown in Figure 3(a) where the observations have
been regressed against components due to three fac-
tors: greenhouse gases, other anthropogenic forcings
(dominated by the effects of tropospheric sulfate
aerosols) and natural factors (volcanoes and solar).
In every case, the estimated scaling factor for green-
house gases (red bars in Figure 3(a)) has a narrow
5–95% uncertainty range that excludes zero, indicat-
ing that their influence has been robustly detected.
This is also the case for other anthropogenic factors
(green bars), although it appears that the response to
non-greenhouse gas anthropogenic factors is under-
estimated in the Parallel Climate Model (PCM). In
contrast, the influence of natural factors (blue bars) is
not detected in every case. Where observed changes
are not consistent with internal drivers or natural cli-
mate drivers alone and the effects of anthropogenic
forcings have been detected in a multivariate regres-
sion, it is appropriate to conclude that significant
observed changes are attributable to human influence.
For global surface temperatures, there is a very clear

attribution to human influence that is robust across a
range of models and analyses.

Figure 3(b) shows an example of how attribution
analyses are able to quantify the contributions of
different forcings, here expressed as trends over the
20th century. Figure 3(b) shows that there is a greater
degree of consistency across the models for trends
attributable to greenhouse gases than for the trends
attributable to other factors. In fact, as discussed in
detail by Stott et al.,21 the observed patterns in space
and time of surface temperatures over the last century
provide a valuable observational constraint on the
likely range of warming attributable to greenhouse
gases. As a result the model with the lowest sensitivity
of those considered in Figure 3 (the PCM model) has
a 5–95% range of scaling factors greater than one,
indicating evidence that the model’s response should
be scaled up significantly to be consistent with that
observed.

Discussion to this point has focused on analyses
using fingerprints derived from individual models (i.e.,
the first four columns in Figure 3) which assume
that the model predicted pattern of response to a
particular forcing is correct, subject to a uniform
scaling. A further enhancement is to include several
climate models in a single analysis thereby making
it possible to estimate the uncertainty in response
patterns,22,23 and a more comprehensive estimate of
attributable changes. Such an analysis (from Ref 23)
is shown by the set of bars on the right hand side of
Figure 3 (denoted by EIV).

Understanding of the past provides increased
confidence in predictions of likely changes in future.
In particular, there is a close relationship between
past and future greenhouse gas warming,24,25 and
uncertainties in future warming can be derived
based on attribution of past warming.21,24,25 These
observationally constrained analyses, such as those
shown in Figure 3, indicate that it is very likely that
aerosol cooling is suppressing a major portion of
current greenhouse warming (see Ref 26 as illustrated
by the fact that all the green bars in Figure 3(b) are
below the x axis) as suggested by pure modeling
studies.27 As a result, additional warming is implied if
aerosol pollution is removed from the atmosphere in
future.

TEMPERATURE
We take a regional perspective in this review to
reflect the growing need for attribution studies to
go beyond globally averaged quantities and consider
how climate change varies across the globe. We
divide our review of temperature attribution into a
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FIGURE 3 | Estimated contribution from greenhouse gas (red), other anthropogenic (green) and natural (blue) components to observed global
surface temperature changes. (a) 5–95% uncertainty limits on scaling factors based on an analysis over the 20th century, (b) the estimated
contributions of forced changes to temperature changes over the 20th century expressed as the difference between 1990–1999 mean temperature
and 1900–1909 mean temperature. The horizontal black line shows the observed temperature changes from HadCRUT2v.20 Five different analyses
are shown using different models which are explained in more detail in the text. Adapted from Hegerl et al.2

subsection on continental and subcontinental scales,
where by subcontinental scales we mean a subdivision
of continents into a small number of regions, and a
subsection on smaller scales, going down to the scales
of climate model grid boxes or of order 500 km.

Continental to Subcontinental Scale
The first systematic investigation of continental scales
to use the optimal detection regression approach
described above was by Stott.28 This study found
a detectable change over the 20th century in
decadal mean temperatures over each of the six
populated continental areas (Europe, North America,
South America, Asia, Australia, and Africa), and

furthermore found that these changes could only
be reproduced with the inclusion of anthropogenic
greenhouse gas emissions. These conclusions for the
northern continents were supported by the studies
of Karoly et al.29 and Zwiers and Zhang30 which
focused on the continents of North America, Europe,
and Asia. More recently, Gillett et al.31 used a similar
approach to examine surface temperatures over
Antarctica and detected an anthropogenically forced
warming over the past 50 years. Thus, anthropogeni-
cally forced temperature changes have now been
detected on each of the seven continents.

Recent work has extended these results further,
to smaller scales and seasonal averages. Min and
Hense32 used a Bayesian decision approach which
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classified seasonal temperature changes over the six
populated continents according to proposed causes.
Not only was the decision in favor of requiring
anthopogenic forcing for most continent-season cases,
but the decisions also proved robust to the degree of
prior expectation of no detectable change.

Jones et al.33 examined summer (June–August)
mean temperatures over the past century over a set
of standard subcontinental regions of the Northern
Hemisphere. These subcontinental regions divide
each of the six continental region into a small
number (between two and six) subregions chosen
to represent different climate regimes.34 When signals
were regressed individually against the observations,
an anthropogenic signal was detected in each of 14
regions except for 1, central North America, although
the results were more uncertain when anthropogenic
and natural signals were considered together. Zhang
et al.35 examined the detectability of the seasonal
signal of anthropogenic forcing as a function of
spatial scale in the Northern Hemisphere. Consistent
with the Jones et al.33 results, they found robustly
attributable signals down to the continental scale,
with the effects of both anthropogenic greenhouse
gases and aerosols being detected separately. Gillett
et al.36 detect a human influence on summer season
warming in Canada and demonstrate a statistical link
with area burned in forest fires.

An example of such an analysis for Eastern
North America carried out with the PCM and
HadCM3 climate models is shown in Figure 4. This
illustration shows that the effects of greenhouse gases
are clearly detected in this region (the red bars in
Figure 4(b) are above the x axis). The regression
procedure scales the models’ responses to the different
forcings to produce a better agreement with the
observations.

Smaller Scales
These regional studies described so far are approach-
ing the scale of administrative divisions. However,
difficulties remain in attributing observed tempera-
tures changes at regional scales. Regional temperature
and precipitation are affected by low-frequency vari-
ations in atmospheric circulation, such as associated
with the North Atlantic Oscillation (NAM) or the
Southern Annular Mode (SAM).37 Wu and Karoly11

considered observed warming trends over the period
1951–2000 in individual regions of order 500 km
scale. They found significant warming trends, outside
the range of natural variability, in more than 50%
of the individual regions, even allowing for the influ-
ence of changes in atmospheric circulation. Bhend

and von Storch38 and Bonfils et al.39 have exam-
ined smaller spatial scales by using multiple modeling
methods to create higher resolution datasets. While
these studies considered smaller scales, neither con-
sidered a range of factors, such as land use change,
irrigation or reservoir construction, which could cause
climatic responses with small-scale spatial structure.
Additional forcing factors, including aerosols, are also
likely to be more important at regional scales. Relevant
model simulations considering the different forcing
factors separately are often not available, so the attri-
bution to different forcings is limited to a consistency
analysis rather than a full attribution analysis in which
all plausible forcing factors are considered. For exam-
ple, increases in irrigation in California have been
important for regional temperature trends,40 while
land cover change can be important for regional tem-
perature changes.41,42

As an example of a regional consistency
attribution study, Karoly and Stott43 considered
observed central England temperatures and simulated
temperatures from a single climate model grid
cell. They showed that model-simulated variability
of central England temperature agreed well with
that observed at interannual, decadal, and 50-year
timescales. They concluded that the observed warming
trends over the last 50 years are very unlikely to
be due to natural internal variability, cannot be
explained by the response to changes in natural
external forcing, and are consistent with the response
to changes in anthropogenic forcing, increases in
greenhouse gases and aerosols. This is an example
of a consistency study, as only a limited number
of possible forcing factors were considered and the
contributions of the different factors to the observed
warming were not estimated. Dean and Stott44 carried
out a similar consistency analysis for New Zealand
but in addition took account of the most important
mode of regional climate variability that has caused
a trend to more southerly flows in recent decades
and hence a reduction of New Zealand warming.
On removal of the influence of this circulation
variability, they found that recent trends in the
residual temperature record cannot be explained by
natural climate variations but are consistent with
the combined climate response to anthropogenic
greenhouse gas emissions, ozone depletion and sulfate
aerosols, demonstrating a significant human influence
on New Zealand warming. Variability at regional
scales can mask or accelerate human-induced warming
and a full understanding of such effects requires
climate models that can adequately capture such
variability.

 2010 John Wi ley & Sons, L td.



WIREs Climate Change Detection and attribution of climate change

−1.0

A
no

m
al

y 
(°

C
)

−0.5

0.0

0.5

1.0

1.5

−1.0

A
no

m
al

y 
(°

C
)

−0.5

0.0

0.5

1.0

1.5

1900 1920 1940 1960 1980 2000

Time

1900 1920 1940 1960 1980 2000

Time

Unadjusted simulations(a) (b)

(d)(c) Adjusted simulations

−1

S
ca

lin
g

0

1

2

−1

0

1

2

Regression coefficients

Attributable warming

D
iff

er
en

ce
 (

°C
)

PCM UKMO–HadCM3

PCM UKMO–HadCM3

CRUTEM3 PCM UKMO–HadCM3 GHG AER NAT

FIGURE 4 | Regression analysis of 5 year, area mean temperature variations over Eastern North America during the 1900–1999 period. (a) Data
from CRUTEM3 observations7 (black) and from simulations of two climate models including both natural and anthropogenic forcings (red and green).
(b) 5–95% confidence intervals on scaling coefficients for the responses to various forcings in each climate model using the regression formula in
Eq. (1). Simulations with historical greenhouse gas forcing only, historical natural forcings only, and both natural and anthropogenic forcings were
input into the analysis. Scalings are shown for the responses to greenhouse gas forcing (red), sulfate aerosol and other anthropogenic forcing (green),
and natural forcing (blue). (c) The resulting 5–95th percentile ranges on possible 5-year average temperatures for the two climate models (red and
green), compared to observations (black). (d) The warming between the 1900–1909 and 1990–1999 periods attributable to each of the external
forcings. Diamonds show estimates from individual simulations (black). Lines show the estimated 5–95% confidence interval estimated using the
linear regression analysis. Note that the larger warming of the PCM model over the UKMO-HadCM3 model visible in (a) was adjusted through the
different greenhouse gas forcing scalings in (b), producing better agreement between the models in (c) and (d).

With growing concerns about regional impacts
of climate change in natural systems, attribution of
climate change to anthropogenic forcing at regional
scales is becoming more important. However, as was
also discussed by Hegerl et al.,2 attribution at regional
scales is limited at present by the relatively lower
signal-to-noise ratios, the difficulties of separately
attributing the effects of the wider range of possible
forcing factors at these scales, and limitations of
models in capturing some characteristics of regional
climate variability.

One issue to be addressed is how to combine
global scale and regional scale information in the same
analysis. Rather than analyze each separate region in
isolation, Christidis et al.23 calculated distributions

of regional trends using constraints from a global
optimal detection analysis and multiple climate
models. Figure 5 compares distributions of regional
mean near-surface temperature trends consistent with
the observed effects of anthropogenic and natural
forcings (in red) with distributions of trends in the
world that might have been if there had been no
human influence on climate (in green). The likelihood
of experiencing the observed trends (shown as the
black lines in Figure 5) can then be compared in
the two worlds (as represented by the red and green
distributions). Human influence is estimated to have
more than doubled the likelihood of positive warming
trends in every region considered except central North
America.
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likelihood. The observed trend in each region is marked on each panel as a black line. The regions are South Australia (SAU), North Australia (NAU),
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HYDROLOGICAL CYCLE

Theoretical Understanding of How
the Hydrological Cycle Responds
to Anthropogenic Warming
The water holding capacity of the lower troposphere
increases in a warmer world, as does the amount of
water vapor in the lower troposphere. According to
the Clausius–Clapeyron (CC) relation, the saturation
vapor pressure increases exponentially with tempera-
ture. As moisture condenses out of supersaturated air
from time to time, it is physically plausible, and has
been assumed in many studies, that the distribution
of relative humidity would remain roughly constant
under climate change. In this case, the CC-relation
implies a roughly exponential increase with tempera-
ture in specific humidity at a rate of about 7%/K.45

The direct consequences of such a water vapor increase
would include a decrease in convective mass flux, an
increase in horizontal moisture transport, associated
enhancement of the pattern of evaporation minus pre-
cipitation and its temporal variance, and a decrease in
horizontal sensible heat transport in the extratropics.
An anticipated consequence of these flux and trans-
port changes is that wet regions should become wetter
and dry regions drier.46 Many of these anticipated
changes, reasoned from physical principles, have been
observed and confirmed by climate model simulations.

Atmospheric Humidity
Lack of appropriate data has been a significant
limiting factor in the analysis of humidity changes,
although there has been some recent progress with
the development of the HadCRUH Surface Humidity
dataset.47,48 HadCRUH (as shown in Figure 6)
indicates significant increases between 1973 and
2003 in surface-specific humidity over the globe,
the tropics, and the Northern Hemisphere, with
consistently larger trends in the tropics and in the
Northern Hemisphere during summer, and negative
and nonsignificant trends in relative humidity. This
is in accord with the CC-relation: warmer regions
should exhibit larger increases in specific humidity for
a given temperature change. Anthropogenic influence
has been clearly detected in this surface humidity
dataset.47 The anthropogenic water vapor fingerprint
simulated by an ensemble of 22 climate models has
also been identified in lower tropospheric moisture
content estimates derived from SSM/I data covering
the period 1988–2006.49

Precipitation
The availability of energy is a stronger constraint
than the availability of moisture on the increase of
global precipitation.45 Mitchell et al.50 theorized that
the latent heat of condensation in the troposphere

 2010 John Wi ley & Sons, L td.



WIREs Climate Change Detection and attribution of climate change

−0.50

−0.40

−0.30

−0.20

−0.10

0

0.10

0.20

0.30

0.40

0.50

(a) (b) (c)

(d) (e) (f)

FIGURE 6 | Observed (top row) and simulated (bottom row) trends in specific humidity over the period 1973–1999 in grams per kilogram per
decade. Observed specific humidity trends (a) and the sum of trends simulated in response to anthropogenic and natural forcings (d) are compared
with trends calculated from observed (b) and simulated (e) temperature changes under the assumption of constant relative humidity; the residual
actual trend minus temperature induced trend is shown in (c) and (f). Adapted from Willett et al.47

is balanced by radiative cooling. Warming the
troposphere enhances the cooling rate, thereby
increasing precipitation but this could be partly offset
by a decrease in the efficiency of radiative cooling
due to an increase in atmospheric greenhouse gases.
As a result, global precipitation rates are expected to
increase only at around 2%/K in General Circulation
Model (GCM)s rather than following the 7%/K of
the CC relationship. Wentz et al.,51 using a relatively
short 20-year SSM/I record, suggest that observed
global precipitation has increased according to the
much faster CC-relation, but Liepert and Previdi52

show that 20 years may not be sufficient to determine
whether models and observations agree on the rainfall
response to global warming. This is because of various
problems with observational data and because global
precipitation change estimated over such a short time
period may not be representative of changes that
will occur on longer timescales. Observed changes
in globally averaged land precipitation appear to
be more consistent with the expected effects of
both anthropogenic and natural forcings (including
volcanic activity that affects short wave forcing) than
with the effects of long wave forcing in isolation.53,54

Another expected aspect of simulated precipi-
tation change is a latitudinal redistribution of pre-
cipitation including increasing precipitation at high
latitudes and decreasing precipitation at subtropical
latitudes, and potentially changes in the distribution of

precipitation within the tropics by shifting the position
of the Intertropical Convergence Zone. Comparisons
between observed and modeled trends in land precip-
itation over two periods during the 20th century are
shown in Figure 7. A comparison of observed trends
averaged over latitudinal bands with those simulated
by 14 climate models forced by the combined effects of
anthropogenic and natural external forcing, and by 4
climate models forced by natural forcing alone, shows
that anthropogenic forcing has had a detectable influ-
ence on observed changes in average precipitation.55

While these changes cannot be explained by internal
climate variability or natural forcing, the magnitude of
change in the observations is greater than simulated.

The influence of anthropogenic greenhouse gases
and sulfate aerosols on changes in precipitation over
high-latitude land areas north of 55◦N has also
been detected.56 Detection is possible here, despite
limited data coverage, in part because the response
to forcing is relatively strong in the region, and
because internal variability is low, as is expected in
dry regions. Consistent with this argument, there has
been some consistency in northern Europe winter
precipitation between that from observations and that
from simulations conducted by four different regional
climate models.38 Generally, however, detection and
attribution of regional precipitation changes remains
difficult because of low signal-to-noise ratios and poor
observational coverage. To date there have been no
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FIGURE 7 | Observed (solid black) and
simulated zonal-mean land precipitation trends
for 1950–1999. Black dotted lines indicate the
multimodel mean from all available models
(including both anthropogenic and natural
forcings (denoted ALL) in (a), anthropogenic
forcings only (ANT) in (b), and natural forcings
only (NAT) as represented by ALL–ANT in (c),
and black dashed-dotted lines from the subset of
four models that simulated the response to each
of the forcing scenarios (ALL4, ANT4, and NAT4).
The model-simulated range of trends is shaded.
Black dashed lines indicate ensemble means of
ALL and ANT simulations that have been scaled
(SALL and SANT) to best fit the observations
based on a one-signal analysis. Colored lines
indicate individual model mean trends.
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detection and attribution studies of precipitation over
oceans because the available satellite datasets (such as
that from the SSM/I) are short and not considered to
be sufficiently reliable for this purpose.

Runoff Change and Drought
Monitoring and understanding changes in runoff and
drought is more difficult than for temperature and
precipitation because soil moisture is poorly observed,
and soil moisture and runoff changes are difficult
to constrain from the residual difference between

precipitation and evaporation, both of which are
also relatively poorly observed. Many factors can
cause soil moisture and runoff changes, including
changes in climate, land use, stream management,
water withdrawal, and water use efficiency by plants
in high CO2 environments (57). Nevertheless, there
has been an overall global increase in dry areas, as
represented by the Palmer Drought Severity Index
(PDSI), a commonly used meteorological drought
indicator, and this increase has been attributed to
anthropogenic influence.58 It should be noted that the
calculation of PDSI involves changes in both surface
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temperature and precipitation but is dominated by
changes in temperature, and therefore, detection in
PDSI is largely associated with increased temperatures
rather than changes in precipitation.

Despite more intensive human water consump-
tion, continental runoff has increased through the 20th
century. Gedney et al.,57 using a surface exchange
scheme driven by observations and climate model
simulations, detect anthropogenic influence on global
runoff. They attribute the observed increase in runoff
to a suppression of plant transpiration resulting from
CO2-induced stomatal closure57 although it has been
argued that data limitations call the conclusions of
this study into question.57,59

In climates where seasonal snow storage and
melting plays a significant role in annual runoff, the
hydrologic regime changes with temperature. In a
warmer world, less winter precipitation falls as snow
and the melting of winter snow occurs earlier in spring,
resulting in a shift in peak river runoff to winter and
early spring. This has been observed in the western
US60 and in Canada.61 The observed trends toward
earlier ‘center’ timing of snowmelt-driven streamflows
in the western US since 1950 are detectably different
from natural variability.62 A recent detection study
of change in the hydrological cycle of the western
US attributes up to 60% of observed climate related
trends in river flow, winter air temperature, and snow
pack over the 1950–1999 period in the region to
human influence.63

Cryosphere
Among the varios parameters characterizing changes
in snow cover, snow cover duration has the strongest
sensitivity to variations in climate.64 Maritime
climates with extensive winter snowfall (e.g., the
coastal mountains of western North America) are
most sensitive and continental interior climates with
relatively cold, dry winters are least sensitive. The
largest observed decreases in snow cover duration are
concentrated where seasonal mean air temperatures
are within 5◦C of zero, a zone which extends around
the midlatitudinal coastal margins of the continents.
Climate model simulations of the 20th century show
snow cover changes similar to those observed.64 There
has been a reduction in the ratio of precipitation falling
as snow in the western US that cannot be explained
by climate models including only the natural effects
of solar and volcanic forcings and which has been
attributed to anthropogenic forcings.63,65

Decreases in Arctic sea ice, shown in
Figure 8, are seen in both observations and in
climate model simulations including anthropogenic

forcings,66 although few model simulations show
trends in sea ice extent of comparable magnitude
to observations.67 Human influence on Arctic sea ice
decline is detectable in an optimal detection analysis68

and could have been detected as early as 1992, well
before the last recent dramatic sea ice retreat. In addi-
tion, the anthropogenic signal is also detectable for
individual months from May to December, suggest-
ing that human influence, strongest in late summer,
now also extends into colder seasons.68 In contrast,
Antarctic sea ice has not significantly decreased.

CIRCULATION CHANGES

Two of the major global modes of variability are the
NAM and SAM. Upward trends in these modes have
been shown to be inconsistent with simulated internal
variability (Hegerl et al.2 and references cited therein).

While the NAM trend is larger than that simu-
lated in many climate model simulations,69 the trend
in the SAM is consistent with simulated trends in
simulations including greenhouse gas increases and
stratospheric ozone depletion.70 However, model sim-
ulations can show positive trends in the annular modes
at the surface, but negative trends higher in the atmo-
sphere, and it has been argued that anthropogenic
circulation changes are poorly characterized by trends
in the annular modes.71

Until recently, formal detection and attribution
analyses of sea level pressure (SLP) have been restricted
to individual seasons,72–74 and while these studies all
detected the influence of external forcing on SLP,
none of them were able to separately detect the effects
of anthropogenic and natural influences. Recently,
Gillett and Stott75 carried out a detection and
attribution analysis using SLP from all four seasons
over the 60-year period 1949–2009. Observed SLP,
taken from HadSLP2,76 was compared with output
from two ensembles of simulations of HadGEM1.77,78

The first included anthropogenic greenhouse gases,
aerosols, and stratospheric ozone depletion (ANT),
and the second ensemble also included volcanic
aerosol and solar variability (ALL).

Figure 9 shows linear trends in zonal-mean
SLP for each season over the period 1949–2009 in
observations and the ALL ensemble. As expected, the
largest trends are observed in DJF, with decreases
in SLP over the Arctic and Antarctic. However, one
aspect of the trend pattern which has not received
much attention is the significant increase in SLP
observed in all latitude bands between 32.5◦N and
62.5◦S.75 An increase in SLP is also simulated in
all these latitude bands. The signal-to-noise ratio of
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observed and simulated Arctic sea ice extent
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simulations with anthropogenic only (ANT)
and natural plus anthropogenic (ALL) forcings
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these trends is generally higher than for the high-
latitude trends, due to better sampling and lower
internal variability. The other seasons generally show
a similar pattern of trends to that seen in DJF, with
decreases simulated and observed in the polar regions
and increases at low latitudes, particularly, in the
midlatitudes of the Southern Hemisphere.

Gillett and Stott75 applied a detection and
attribution analysis using 5-year mean SLP in the
seven latitude bands shown and for each of the four
seasons. They were able to detect an anthropogenic
response independently of the natural response and
with an amplitude consistent between model and
observations. These results suggest that while models
may fail to reproduce SLP trends in DJF over the
high northern latitudes,70,73 a more complete analysis
considering all regions and seasons does not find a
significant bias in the amplitude of the simulated SLP
response to external forcing.

Some evidence has been found for changes
in atmospheric storminess. The trend pattern in
atmospheric storminess as inferred from geostrophic
wind energy and ocean wave heights has been found
to contain a detectable response to anthropogenic and
natural forcings with the effect of external forcings
being strongest in the winter hemisphere.74

OCEANIC CHANGES
It has been estimated that over 80% of the excess heat
built up in the climate system by anthropogenic forcing
has accumulated in the global oceans79 and therefore
it is important to understand oceanic variability and
changes since uptake of heat by the ocean acts
to mitigate transient surface temperature rise. The
IPCC AR4 report concluded that the warming of
the upper ocean during the latter half of the 20th
century was likely due to anthropogenic forcing.
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This conclusion was based largely on the studies
of Barnett et al.80 and Pierce et al.81 who extended
previous detection and attribution analyses of ocean
heat content changes,82,83 to a basin by basin analysis
of the temporal evolution of temperature changes
in the upper 700 m of the ocean and who detected
a human-induced warming of the world’s oceans
with a complex vertical and geographical structure.
However, while there was very strong statistical
evidence that the warming could not be explained
by internal variability as estimated by two different
climate models, there were discrepancies between
observed and modeled estimates of global ocean heat
content variability. A large part of this discrepancy
has now been seen to be associated with instrumental
errors,84 and there is much improved agreement when
these bias corrections are included in observational
datasets.85

However, the subsurface ocean has been sparsely
observed in many regions, and sampling errors remain
an issue when comparing observed and modeled
timeseries of ocean properties, with the choice of
infilling method being potentially important in poorly
sampled regions.86,87 A novel process-based technique
for comparing models and observations has been
proposed,88,89 which separates ocean warming into a
component largely associated with changes in air–sea
heat flux (the temperature above the 14C isotherm)
and a component largely associated with advective
redistribution of heat (the depth of the 14C isotherm).
This provides a clearer picture of the drivers of oceanic

temperature changes. Figure 10, from Palmer et al.,90

shows that the HadCM3 climate model captures in
remarkable detail the temporal evolution of ocean
temperatures in the World’s ocean basins over the
last five decades. By comparing space time patterns
averaged over nonoverlapping 2-year periods for five
different ocean basins, Palmer et al.90 detected the
effects of both anthropogenic and volcanic influences
simultaneously in the observed record. This provided
an advance on previous studies by attributing the
short-term cooling episodes to volcanic eruptions and
the multidecadal warming to anthropogenic forcing.

The other major property of ocean water masses
is their salinity. Changes in salinity are of interest
because they integrate changes in precipitation and
evaporation at the surface and could therefore help
better understand changes in the hydrological cycle
over the sparsely observed ocean. It has been suggested
that freshening at high latitudes is consistent with
observed increases in precipitation at high latitudes91

although climate model studies suggest that Atlantic
freshening could be associated with changes in
northward advection associated with variability of
the meridional overturning circulation.92 An optimal
detection analysis of Atlantic salinity changes by Stott
et al.93 detected a human influence on the observed
increases in salinity at low latitudes but found that
high-latitude changes, including a recent reversal of
the freshening observed previously, are consistent with
internal variability.
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A major research topic remains an improved
understanding of the rate of global sea level rise and its
contributions from thermal expansion and melting of
land ice, and a reduction in uncertainty in predictions
of the geographical patterns of sea level rise. Future
progress in attributing ocean changes could be
made by considering water masses properties.94,95

By considering temperature and salinity changes on
density surfaces, it could be possible to better quantify
the effects of anthropogenic and natural forcings on
ocean heat content and better quantify the extent to
which external forcings have altered the hydrological
cycle over the oceans.96,97

EXTREMES

Many analyses of changes in extremes have focused
on globally collected indices of climate extremes
which summarize overall characteristics of extremes

and are derived from high resolution data (see,
e.g., Alexander et al.98). Observed changes in such
indices are broadly consistent with changes expected
with global warming; only with the inclusion of
anthropogenic forcing can models reproduce the
observed changes in frost days, growing season length,
the number of warm nights in a year, and a heat wave
intensity index.99 An observed precipitation intensity
index also appears to track simulated changes.100

Rather than analyze indices, Christidis et al.101

analyzed the daily temperature dataset of Caesar
et al.102 and found a significant human influence on
the observed warming of the warmest night of the
year as well as on warming of the coldest days
and nights of each year. However, they did not
detect a significant change in the temperature of the
hottest day of the year. Extremes of daily maximum
temperatures show distinct regional patterns. Recent
research suggests that some of these regional trends
could be related to regional processes and forcings.
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For example, Portmann et al.103 demonstrated that the
rate of increase in the number of hot days per year in
late spring in the Southeastern US over recent decades
is significantly inversely proportional to climatological
precipitation. They speculate that changes in biogenic
aerosols resulting from land use changes could be
responsible.

In addition to analyzing trends in extremes, a
new framework has been developed for attributing
individual extreme events. In such a framework, as
elucidated by Allen,104 the change in the probability
of an extreme event under current conditions is
calculated and compared with the probability of the
event if the effects of particular external forcings,
such as due to human influence, had been absent. In
such a way Stott et al.105 showed that the probability
of seasonal mean temperatures as warm as those
observed in Europe in 2003 had very likely at least
doubled as a result of human influence (see Figure 11).
The same general approach could, in theory, be
applied to other extreme weather events such as
floods or droughts, in order to determine whether
the probability of a particular event has changed as
a result of a chosen set of climate forcing factors,
although in practice this will require models capable
of capturing the relevant processes.

Attributing causes to changes in the frequency
and intensity of hurricanes has remained very
controversial. Two studies,106,107 have shown that
human-caused changes in greenhouse gases are the
main driver of the observed 20th-century increases
in sea surface temperatures in the main hurricane
formation regions of the Atlantic and the Pacific.

However, the importance of the anthropogenic
increase in sea surface temperature in the cyclogensis
region for past and future changes in hurricane activity
is still poorly understood.108 The limitations of the
observed database and of current climate models
in resolving processes relevant for hurricanes make
progress in this field difficult at present.

In conclusion, while there has been progress
since AR4, there are still many gaps in our
understanding of changes in extremes and in our
ability to attribute observed changes to particular
causes. Changes in temperature extremes have proven
to be more interesting and difficult than an assumption
of a shift of the distribution would lead to expect,
particularly so for daily maxima.103 While attribution
of change in precipitation extremes is made difficult
by the lack of tools for reliable comparison of models
with observations, perfect model studies indicate that
changes in precipitation extremes should be detectable
at least on large scales.109

CONCLUSION

The wealth of attribution studies reviewed in this
article shows that there is an increasingly remote
possibility that climate change is dominated by
natural rather than anthropogenic factors. Progress
since the AR4 has shown that discernible human
influence extends to reductions in Arctic sea ice
and changes in the hydrological cycle associated
with increasing atmospheric moisture content, global
and regional patterns of precipitation changes, and
increases in ocean salinity in Atlantic low latitudes.
In addition, changes in Antarctic temperatures (the
one continent on which an attribution study was not
available at the time of AR4) have been attributed
to human influence and there is increasing evidence
that human influence on temperature is becoming
significant below continental scales, as would be
expected from the large-scale coherence of surface
temperature. We have discussed in this review how
attributed changes in atmospheric moisture content49

and precipitation patterns55 are consistent with
theoretical expectations.45,46

At times, attribution studies can highlight differ-
ences between models and observations that challenge
our understanding and require further investigation.
Major challenges still remain in obtaining robust
attribution results at the regional scales needed for
evaluation of impacts. Climate models often lack
the processes needed to realistically simulate regional
details. In addition, observed changes in non-climate
quantities could be the result of additional influences
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besides climate, thus complicating attribution stud-
ies. Extremes pose a particular challenge, since rare
events are, by definition, poorly sampled in the histor-
ical record, and many challenges remain for robustly
attributing regional changes in extreme events such as
droughts, floods, and hurricanes.

Nevertheless, successful adaptation would bene-
fit from improved information about societal vulnera-
bility in a changing climate.110 We have discussed here
how the changed likelihood of a particular weather
event can be attributed to human influence, and in
principle, such a concept could be applied to any
extreme weather event and its associated impacts.
Models of higher resolution will likely be required to
resolve processes responsible for events such as floods.
Atmosphere only models, constrained by prescribed
sea surface temperatures, can be used to address the
causes of specific events, although atmosphere–ocean
coupling and the causes of the sea surface conditions
also need to be considered.

Above all, understanding observed changes is
an essential prerequisite for successful forecasting
of future changes. Further research on the use of

observational constraints has the potential to reduce
the large spread from modeling uncertainty, some of
which could be slow to reduce purely based on the
improvement of model formulation. Thus this suggests
two key benefits from attribution studies for improv-
ing climate model predictions. First, by finding robust
relationships between observed quantities and predic-
tor variables, attribution studies can be used to obtain
observationally constrained estimates of uncertainties
in future changes. This approach has been applied to
global mean surface temperature but further research
is needed to extend this approach to regional scale
temperatures and other variables. Second, attribution
studies, by identifying model data differences that
are outside the range expected from natural internal
variability, have the potential to highlight inadequa-
cies in model forcing or formulation or problems with
observational datasets. In some instances, better repre-
sentation of regional changes in models might require
inclusion of hitherto neglected forcings or better rep-
resentation of crucial processes. In others, efforts may
be needed to better account for errors and systematic
biases in observational data.
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